Three-dimensional reconstruction of textured
parallelepipeds from digital video

Israel Vite Silva and Luis Gerardo de la Fraga

Computer Science Section
Department of Electrical Engineering. CINVESTAV
Av. Instituto Politécnico Nacional 2508. 07300 México, D.F.
E-mail: fraga@cs.cinvestav.mx

Abstract. In this article, a three-dimensional automatic reconstruction
system is presented. The proposed approach acquires digital video with
perspective projection of any textured parallelepiped, processes the video
frame, reconstructs and visualizes the three-dimensional object. The sys-
tem is divided in three modules: (1) The digital processing module ex-
tracts a video frame from a digital video camera. Next, it processes a
video frame by means of a smoothing filter and an edge detector. After
that, it identifies the vertices of the parallelepiped. (2) The vision module
uses the vanishing points properties and the vertices previously detected
to estimate the intrinsic and extrinsic parameters of the camera. Then,
using an algorithm proposed here, the dimensions of the parallelepiped
are calculated. Finally, the texture is extracted. For us, the texture is
a short phrase of text, and then must be corrected geometrically. (3)
The visualization module shows the recovered three-dimensional object
using OpenGL. The proposed approach was tested using different paral-
lelepipeds with excellent results.

Keywords: Video processing, vanishing points, 3D reconstruction from a single
image.

1 Introduction

In the real world many objects exist that have a parallelepiped form, for exam-
ple: buildings, containers, boxes, among others. These parallelepipeds present
straight lines and right angles that are used to obtain vanishing points. Such
points are the intersection of the parallelepiped lines projected to the infinite.
Caprile and Torre [1] use the vanishing points to calculate some intrinsic and
extrinsic parameters of a camera. When calculating all the parameters say that
the camera has been calibrated, therefore, it knows the position and direction
in a three dimension for each object points allowing reconstruct the object in a

three dimension.

© A. Gelbukh, C. YdAez Mdrquez, O. Camacho Nieto (Eds.)
Advances in Artificial Intelligence and Computer Science
Research on Computing Science 14, 2005, pp. 107-115

108 Vite Silva L., de la Fraga L.

In order to find all the camera parameters, Cipolla [2] uses multiple images
and epipolar geometry, the problem with this approach is that it needs at least
two views for finding all camera parameters, in addition, the user must define
lines to find the vanishing points. Liebowitz and Zisserman [3] use stratified
reconstruction. First, they determine the projective reconstruction by means of
vanishing points, then, estimates an affine projection and finally they obtain
the metric projection and use it to reconstruct the three-dimensional object.
Nevertheless, this approach also needs at least two views and it is frequently
unstable when performing all these numerical calculations.

Jelinek [4) models the object with a polyhedron, doing a correspondence
between the characteristics of the object and the image. With this information,
estimates the camera projection model and the object dimensions. However, the
user must interact with this algorithm to define the correspondence between
the edge of the model and the edge of the image object, in addition, it does
not completely exploit the vanishing points properties, by this reason they must
refine the object dimensions by means of optimization nonlinear techniques.

Several systems have been revised to reconstruct objects. However they need
certain parameters to be specified by the user (p. e. the user manually selects
set of lines or points) to perform the reconstruction.

The proposed system does not need any interaction with user. It only needs
that he/she provides a video stream of the parallelepiped in a perspective pro-
jection, to reconstruct the object automatically. First, the system extracts
video frame and process the image to obtain the parallelepiped’s edges, then,
it calculates the parallelepiped’s vertices using a variation of the Hough trans-
form. After that, it determines the vanishing points and calculates most of the
camera parameters. With these camera parameters and the proposed algorithm
based on [4], the system recovers the parallelepiped dimensions and the rest
of the camera parameters. To recover the texture, the system transforms each
three-dimensional point that composed each one of the visible faces of the par-

allelepiped, to the video frame. Finally, the reconstructed object and its texture

are visualized using OpenGL.

2 System description

The three-dimensional system reconstruction of a parallelepiped is performed in
three modules: the digital processing module, the vision, and the visualization

modules. They will be described in the following subsections.

2.1 Digital processing module

The system acquires a video stream of a parallelepiped in perspective projection
from a digital video camera. Then a single video frame is extracted with size
720 x 576 pixels, using libdv library [5]. The frame is converted to a gray scale
image using the formula of Craig. An example of this kind of image is show in

Fig. 1(a).

Three-dimensional reconstruction of textured parallelepipeds from digital video 109

(a) (b)

Fig. 1. (a) A gray scale image of a video frame of a parallelepiped A, (b) corresponding
noiseless video frame.

It is very probable that the video frame presents noise and it affects the
subsequent steps of the process, therefore it is necessary to use a smoothing
technique [6]. This technique reduces the abrupt changes in the image: a new
image g(z,y) is generated, where the gray level in each point (z, y) is the average
of the pixels values in a neighborhood of size 3 x 3 pixels.

The next step is the segmentation of the smoothing image. We use an edge
detection to extract the lines of the parallelepiped (see Fig. 2. This step uses the
Sobel operators [6).

Fig. 2. Segmented video frame of parallelepiped A.

In order to recognize the parallelepiped vertices, the algorithm proposed by
Fei Shen and Wang (7] was used. It is based on the following definitions: a
vertex must belong to an edge and must have at least two line intersections. This
algorithm uses a simplified Hough transform, and by this reason, it is possible
to be applied in real-time systems. Also, the simplified Hough transform detect
lines, so the texture over the parallelepiped’s faces does not must composed by
lines larger than the shorter parallelepiped’s edge in order to extract the texture
correctly. To obtain satisfactory results and to reduce the searched area for
each vertex, the system applies to the previously segmented image, a skeleton
algorithm that reduces the contour thickness to one pixel. Here we used the

110 Vite Silva I, de la Fraga L.

skeleton algorithm proposed in (8], based on a 8x8 neighborhood, which identifies
essential pixels that connect the structure of the parallelepiped.

Fig. 3. Skeleton of parallelepiped A. The small squares show the recognized vertices.

The vanishing points are estimated using a sorted version of the vertices
previously found. The sorting allows combine pairs of vertices that form parallel
lines and they are intersected in a vanishing point. First we find all the 301.116(1
vertices: we test if a line between a vertex and all the other vertices exists.
Second, for each found line (a pair if joined vertices), its slope is ?alculate.d.
All slopes can be sorted in three groups, each one identifying a coordinate axis.
Finally, when the lines inside a group are projected to the infinite, these tgnd' to
be united but not in the same point; by this reason, to find the three vanishing
points a weighed average is calculated.

2.2 Vision module

According to the camera pinhole model, the relation between a point in an image

with perspective projection and the three-dimensional world is described by the
equation:

i
U; P11 P12 P13 D14 ;
Ai| vi | = [p21 p22 P23 P24 :Z: (1)
1 P31 P32 P33 P34 1

where (z;, y;, z;, 1) is the i-point in homogeneous coordinates in the three-din}enSlonal
world, (u;,v;, 1) is the i-point in homogeneous coordinates in the image, \; is an
arbitrary scale, and P is the projection matrix,

P = A[RT] (2)

where R is a 3 x 3 rotation matrix, T is 3 x 1 translation vector (known as camera
extrinsic parameters) and A is a 3 x 3 matrix that relates the coordinates of the
image to the coordinates of the camera (known as intrinsic parameters):

Three-dimensional reconstruction of textured parallelepipeds from digital video 111

fra o
A=10 f,o (3)
001

where f:, f, are scale factors, a is the skew parameter, and 0:,0, is the pixel
where is the intersection of the optical axis with the image plane.
Based on (2] and (1], the three vanishing points have the following restriction,

10
AU Agug Azug 01 g
A1 Aug Aguz | =P 001 (4)
Mdz A 000

where A; is the scale that initially is unknown, and u;, v; are the vanishing points
coordinates.

Under assumption of known aspect ratio (f = f, = fy) and zero skew (a = 0)
in the matrix A, the Eq. (4) can be expressed in six linear equations (2] that
recovered scale factor f, projection center o,,0, and lambdas);. With these
parameters and using Egs. 2 and 4, the system calculates the rotation matrix.

To recover the parallelepiped dimensions, the system uses an algorithm pro-
posed in (4], which models the object by a polyhedron, where coordinates of the
vertices are expressed by linear functions.

It means that exists a set of 3 x n matrices (K7, Ko..., K. n), Where the position
of the i-th vertex is given by K;~.

In the proposed algorithm, a vertex is translated to origin. The rest of the
vertices are transformed, using the new origin, to linear functions of the vector
dimension v = (LHD)*, for example, in figure 4,

Fig. 4. Parameterized linear model

the points P, y P; are represented by:

112 Vite Silva l, de la Fraga L.

000
={000 |~
001

100
=]1010}7.
001

Py =

bty boo

where L is width, H is height and D is depth of the parallelepiped. The projection
of each vertex in the image should lie along the lines and can be expressed as:

eA(RKv+T) =0 (5)

where l;.k is a line.in homogeneous coordinates that goes from vertex j to vertex
k. The line in homogeneous coordinates is described by,

a
ex+by+c=0, Il=|b (6)
c

The cross product between the vertices is used to calculate these homoge-
neous lines. This operation performs some multiplications that could result in a
slowly process. By this reason, we propose to generate the lines in homogeneous
coordinates, from the origin (0,0) to the vertex (z;,y;). This gives us a line
(-;,2;,0)* which does not calculate the cross product, eliminates the ¢ term in
Eq. (6), and reduces the number of operations to solve the homogeneous linear
system of equations.

When we apply all the vertices to the equation 5, a linear system of equations
is obtained. This linear system is solved by SVD (9], obtaining the parallelepiped
dimensions. Also, the translation vector t is recovered.

Finally, using Eq. 1 with intrinsic and extrinsic parameters already found, the
system extracts the visible textures of the parallelepiped. This is performed by
linking each three-dimensional point with its corresponding pixel in the image on
each parallelepiped face. Therefore the texture is obtained without any rotation,
and it can be used to recover some kind of information that the face has (in our
case, it is text).

2.3 Visualization module

This module visualizes the recovered three-dimensional object, and is a graphical
interface developed with OpenGL. The user can interact with it changing the
position, direction, scale and illumination. Also, the GUI does texture mapping,
showing the object in a realistic form.

Three-dimensional reconstruction of textured parallelepipeds from digital video 113

Fig. 5. Model visualization of parallelepiped A. The right image shows a hidden face
of the reconstructed parallelepiped. Of course, for that hidden face none texture was
assigned.

3 Results

In Fig. 5 we can see two views of the three-dimensional reconstruction, of a
parallelepiped labeled ’A’, obtained from the single video frame showed in Fig.
1. The right image in Fig. 5 shows a side of the parallelepiped that can not be
seen in the frame in Fig. 1.

In figure 6(a) is shown the video frame of other parallelepiped, labeled 'B’,
and in figure 6(b) appears the object reconstructed with our system.

(a)

(b)
Fig. 6. (a) Video frame of parallelepiped B. (b) Visualization of the object B.

In the tables I and II are shown the real measurement and the recovered
value in an arbitrary scale of parallelepipeds A and B presented in figure 1 and
figure 6 respectively.

114 Vite Silva I., de la Fraga L.

Table 1. Values of parallelepiped A.

Side |Real (cm)|Recovered
Width 4 0.280808
Height 2 0.139793
Depth 8 0.607545

Side [Real (cm)|Recovered
Width 9 0.24289
Height 6 0.196395
Depth 7.5 0.216665

Table 2. Values of parallelepiped B

In order to compare real dimensions and recovered dimensions, both are
normalized and the error ratio is shown in the tables III and IV.

Side | Real [Recovered|Rate Error (%)
Width|0.285714| 0.27312 1.25
Height|0.142857| 0.135966 0.68
Depth [0.571428| 0.590913 1.94

Table 3. Normalized values and error ratio for parallelepiped A.

Side | Real [Recovered|Rate Error (%)
Width| 0.4 0.370287 2.97
Height|0.266666| 0.299405 3.27
Depth|{0.333333] 0.330307 0.3

Table 4. Normalized values and error ratio for parallelepiped B.

4 Conclusions and Future Work

The system described in this article, reconstructs a textured parallelepiped using
a single video frame acquired by a digital video camera (using a Cannon DM-
GL2). The camera does not need previously calibration.

All modules do not need any fine-tune by the user. The user only takes a video
stream of the parallelepiped using the video camera and the system extracts a
single video frame to recover and visualize the three-dimensional object.

The system can reconstruct another type of objects, but it should replace the
parallelepiped model by the object model wished; the restriction is the object
must be a polyhedron.

Three-dimensional reconstruction of textured parallelepipeds from digital video 115

The total execution time of the system is smaller than a second, in a computer
Pentium 4 to 2.0 GHz under GNU/Linux.

The obtained results that were presented have a high accurate because of the
small error ratio, between the real dimensions of the object and the dimensions
obtained; also, the extracted texture of the image allows to visualize it as it is
in the real world, even though the texture is not totally visible in the processed
frame.

Our proposed system can be applied to recover text short phrase regions
and correct its orientation in any parallelepiped or an object that it can be
modeled by a polyhedron, thus the characters are straightened and these could
be recognized. This can be used to recognize automatically cars plates or the
containers legends in a shipping port.

Acknowledgments

This work has been partly supported by grant 45306 from CONACyT, México.

References

1. B. Caprile and V. Torre. Using vanishing points for camera calibration. International
Journal of Computer Vision, (4):127-140, 1990.

2. R. Cipolla, T. Drummond, and D. Robertson. Calibration from vanishing points in
image of architectural scenes. In The 10th British Machine vision conference, 1999.

3. D. Liebowitz and A. Zisserman. Metric rectification for perspective images of planes.
CVPR, pages 482-488, 1998.

4. David Jelinek and Camillo J. Taylor. Reconstruction of linearly parameterized
models from single images with camera of unknown focal length. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 23(7):767-773, Julio 2001.

5. Charles Krasic and Erik Walthinsen. http://libdv.sourceforge.net/.

6. Rafael C. Gonzalez. Digital Image Processing. Addison Wesley, 1996.

7. Han Wang Fei Shen. Corner detection based on modified hough transform. Pattern
Recognition Letters, (23):1039-1049, 2002.

8. J. R. Parker. Practical Computer Vision using C. Wiley, 1994,

9. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C++: The Art of Scientific Computing. Presss Syndicate of
the University of Cambridge, 2002.

